RESPIRATORY DISEASE IN THE IMMUNOSUPPRESSED HOST
Acquisitions Editor: Charles McCormick
Production Manager: Janet Greenwood
Production: P. M. Gordon Associates
Compositor: Achorn Graphics
Printer/Binder: Murray Printing Company

Copyright © 1991, by J. B. Lippincott Company. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission except for brief quotations embodied in critical articles and reviews. Printed in the United States of America. For information write J. B. Lippincott Company, East Washington Square, Philadelphia, Pennsylvania 19105.

Library of Congress Cataloging-in-Publication Data
Respiratory disease in the immunosuppressed host / James Shelhamer . . .
[et al.].
 p. cm.
 Includes bibliographical references.
 Includes index.
 1. Respiratory system—Diseases. 2. Immunosuppression—Complications and sequelae. 3. Lungs—Infections. 4. Pneumonia.
 I. Shelhamer, James.
 [DNLM: 1. Communicable Diseases. 2. Immunologic Deficiency Syndromes. 3. Lung Diseases. 4. Respiratory Tract Diseases. WF 140 R4341026]
616.97'92—dc20
DNLM/DLC
for Library of Congress 90-13399
CIP

The authors and publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new or infrequently employed drug.
Contents

I. PREDISPOSITION TO DISEASE 1
 1. Pulmonary Host Defenses Herbert Y. Reynolds 3
 2. Adverse Effects of Pharmacologic Therapy on Pulmonary Host
 Defenses Steve Nelson and Warren R. Summer 15
 3. Radiation and Cytotoxic Drug Effects on Lung Natural Defense
 Mechanisms Peter A. Mahler and Timothy J. Kinsella 30

II. DIAGNOSTIC APPROACHES 37
 4. Radiographic Techniques Theresa C. McLeod 39
 5. Nuclear Medicine Procedures Stanley J. Goldsmith and Christopher
 Palestro 55
 6. Sputum Evaluation and Nonbronchoscopic Lavage Gregg Y. Lipschik
 and Joseph A. Kovacs 64
 7. Bronchoscopy and Related Techniques Stewart J. Levine and Diane E.
 Stower 73
 8. Transtracheal and Transbronchial Needle Aspiration Brian P. Burlew
 and Edward F. Haponik 94
 9. Open Lung Biopsy Robert E. McCabe and Jack S. Remington 105
 10. Thoracentesis and Pleural Biopsy Steven A. Sahn 118
 11. Assessment of Cardiac Effects on Pulmonary Function Robert E.
 Cunnion and Joseph E. Parrillo 130
 12. Pulmonary Function Tests Robert J. Fallat and John Fullerton 146
 13. Microbiologic Diagnosis of Respiratory Infections John A.
 Washington 168
 Travis and David B. Roth 182
 15. Cytologic Diagnosis of Respiratory Disease Diane Solomon and Gittie
 Jaffe 218

III. SPECIFIC CAUSES OF RESPIRATORY DYSFUNCTION 233
 A. INFECTIOUS CAUSES 235
 16. Community-Acquired Pneumonia John G. Bartlett 235
 17. Nosocomial Bacterial Pneumonia Jane R. Zucker and Donald A.
 Goldmann 255
 18. Aspiration Pneumonia R. Dwaine Rieves and James H. Shelhamer 277
 20. Chlamydia Pneumonia Thomas C. Quinn 298
 21. Pneumonia due to Mycobacterium tuberculosis and to Atypical
 Mycobacteria Daniel R. Kuritzkes and Harvey B. Simon 312
22. Pneumonia due to Nocardia and Actinomyces Marcia B. Goldberg and Harvey B. Simon 330
23. Pneumonia due to Candida, Aspergillus, and Mucorales Species Jeffrey M. Jones 338
24. Pneumonia due to Endemic Fungi David J. Drutz 355
25. Pneumonia due to Herpesviruses Robert T. Schooley 386
26. Pneumonia Caused by Viruses Other Than Herpesviruses Raphael Dolin 398
27. Pneumocystis carinii Pneumonia Henry Masur 409
28. Strongyloidiasis Donald Armstrong and Josephine Paredes 428
29. Infections of the Pleural Space Steven A. Sahn 433
30. Infections of the Sinuses, Ears, and Hypopharynx Ellen R. Wald 450

B. NONINFECTIOUS CAUSES 469
31. Cardiogenic Pulmonary Edema Robert E. Cunnion and Joseph E. Parrillo 469
32. Adult Respiratory Distress Syndrome Jeffrey Weiland and James Gadek 481
33. Drug-Induced Pneumonitis and Interstitial Pneumonitis Edward C. Rosenow III 488
34. Radiation Pneumonitis Andrew Raubitschek and Eli Glatstein 504
35. Thoracic Neoplasms Edward A. Sausville and R. Ilona Linnoila 512
36. Venous Thromboembolism Kenneth M. Moser 530

IV. DIAGNOSTIC AND THERAPEUTIC PROBLEMS IN SPECIFIC PATIENT POPULATIONS 535
37. Pulmonary Disease in the HIV-Infected Patient Anthony F. Sufredini and James H. Shelhamer 537
38. Respiratory Disease in Kidney and Liver Transplant Recipients R. Paul Johnson and Robert H. Rubin 567
39. Respiratory Disease in Bone Marrow Transplant Patients Stephen W. Crawford and Joel D. Meyers 595
40. Pulmonary Disease in Heart and Heart–Lung Transplant Recipients Robert G. Brooks, James Theodore, and Jack S. Remington 624
41. Respiratory Diseases in Patients with Malignant Neoplasms Thomas J. Walsh, Marc Rubin, and Philip A. Pizzo 640
42. Management of Patients with Pulmonary Manifestations of Collagen–Vascular Diseases Rex M. McCallum and Barton F. Hayes 664
43. Respiratory Disease in Patients Treated with Glucocorticosteroids Gary S. Hoffman and Anthony S. Fauci 682
44. Pulmonary Disease in Primary Immunodeficiency Disorders and Pediatric Acquired Immunodeficiency Syndrome Diane W. Wara 690
45. Vasculitis Randi Y. Leavitt, William D. Travis, and Anthony S. Fauci 703
46. An Approach to the Management of Respiratory Disease in the Immunosuppressed Adult Frederick P. Ogniben 728

V. PREVENTION OF RESPIRATORY DISEASE 739
47. Prevention of Respiratory Disease Bradley N. Doebbeling and Richard P. Wenzel 741

INDEX 760
Pulmonary Function Tests

Robert J. Fallat

John Fullerton

The high frequency of pulmonary disease in patients with the acquired immunodeficiency syndrome (AIDS) has led to increased interest in pulmonary function tests (PFTs) in the immunosuppressed host. Office and bedside spirometry, previously directed primarily at the patient with obstructive airways disease, is a simple and sensitive screening test for lung disease in immunosuppressed patients. Arterial blood gas determination can now be supplemented with noninvasive measurements of continuous oxygen saturation (SaO2) by pulse oximetry to test the adequacy of oxygenation at rest and during exercise. Abnormalities of oxygenation during rest and exercise and abnormalities of the lung’s diffusing capacity (DLco) are very sensitive indices for detecting and monitoring the most common pulmonary disease in the AIDS patient, Pneumocystis carinii pneumonia. However, the specificity of PFTs generally is poor, and the appropriate use of the more costly and technically demanding tests, such as DLco, remains in question.

This chapter describes the pathophysiologic correlates of the commonly used PFTs from the standpoint of lung mechanics or ventilatory lung function and considers gas exchange abnormalities. The sensitivity and clinical usefulness of PFTs relative to the specific infectious and noninfectious diseases will then be discussed. Finally, an algorithm is proposed as a guide to the use of PFTs in immunosuppressed patients.

PULMONARY FUNCTION TESTS

Mechanics: Volume and Flow Measurements

The most fundamental ventilatory test is spirometry.1-3 Volume displacement devices that trace volumes over time are technically simple to use, even by inexperienced personnel, and provide reliable data. The most useful and common measurements are the forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC) (Fig. 12-1). Electronic devices that measure flow directly, especially when used in conjunction with microcomputers, provide a full array of automated data, including the flow-volume loop, described in Figure 12-2.6 The validity of these measurements requires careful calibration.1,7 In addition to the usual electronic calibration, use of a syringe of known volume or performance of the test by a reliable technician are the best ways to ensure accuracy. The variation in FVC and FEV1 should be less than 5% or 100 mL (whichever is greater), on repeated measurements.7 The range of predicted values for VC is wide (100% ± 20%, or approximately ±800 mL); since VC can be reproducibly measured to within ±5%, and since a loss of 10% or 400 mL may be clinically significant, it is useful to have baseline measurements for future reference in immunosuppressed patients, who often develop pulmonary complications.

The VC can be obtained with a slow, inspiratory maneuver, the slow vital capacity (SVC or IVc), or a rapid, forced expiratory maneuver (FVC). The former is generally higher in the patient with obstructive airways disease or a tendency to cough or develop bronchospasm with the FVC maneuver (see Fig. 12-2,E).

To reduce the cost of equipment and personnel time, simple, inexpensive, disposable spirometers can be used. Although the measurements will not be equivalent to the VC, they can be used to monitor a given patient with restrictive lung disease over time. Such devices avoid cross-contamination from a spirometer. In addition, these devices provide a mechanism for the treatment or prevention of atelectasis, so common in the immunosuppressed host with pulmonary complica-
Use of PFTs in Differential Diagnosis

Spirometry alone can often provide a definite diagnosis. A reduced VC with a high FEV₁/FVC ratio (>80%) and absence of curvature in the flow–volume loop suggests restrictive lung disease (see Fig. 12-2,B). Rigorous confirmation of restrictive lung disease requires the measurement of residual volume (RV) and total lung capacity (TLC) using more complex techniques such as the washout of nitrogen from the lungs with oxygen, equilibration of helium in a closed rebreathing system, or body plethysmography. A less accurate TLC is obtained during the DLco measurement and is referred to as alveolar volume (VA). All of these methods provide RV and TLC with a coefficient of variation in excess of 25% (see references 8 and 9 for descriptions of these methods).

When the FEV₁/FVC is lower than predicted and there is downward curvature on the flow–volume loop, airway obstruction is diagnosed (see Fig. 12-2,C). The VC may be reduced due to obstructive airways disease and may not necessarily indicate restrictive lung disease. To definitively diagnose restrictive lung disease in the presence of airways obstruction, it is necessary to show the RV and TLC to be decreased, or at least not increased, as expected when significant airway obstruction is present.

Combined restrictive lung disease and obstructive airways disease is common in the immunosuppressed host. Even with a marked decrease in VC, significant airway obstruction may be present. The FEV₁/FVC ratio may be normal and wheezes absent since all flows are low; however, obstructive airways disease can be diagnosed from the curvature of the flow–volume loop, with low flows as exhalation approaches RV (see Fig. 12-2,D). Improvement after the administration of bronchodilator aerosol may also confirm the presence of obstructive airways disease as well as indicate the need for treatment with these agents.

A common problem in spirometry is failure of the patient to exhale fully. Frequently the patients are weak and fatigued or have hyperreactive airways with sensitive cough reflexes that prevent such maneuvers (see Fig. 12-2,E). The reduced VC is artifactual and may be misleading by exaggerating the degree of restriction. Also, the airway obstruction may not be revealed, as the slow flows or "tail" of the flow–volume loop that are indicative of disease in the peripheral or smaller airways are not present (see Fig. 12-2,D).

Gas Exchange Measurements

Determination of pH and O₂ and CO₂ tension in arterial blood is used to diagnose alveolar hypventilation (Paco₂ > 50 mmHg) and hypoxemia (PaO₂ < 80 mmHg on room air). The alveolar O₂ (PaO₂) is approximated by the Fio₂ × 700 mmHg − Paco₂ (assuming a respiratory quotient of 1.0). The difference between the PaO₂ and Paco₂, called the alveolar–arterial oxygen gradient (A–aO₂), is less than 20 mm Hg when the subject is breathing room air, should not increase with exercise, and should remain less than 50 mm Hg even with a high Fio₂. In the earlier phases of lung disease, PaO₂ may be normal at rest; only under the stress of increased blood flow and decreased venous oxygen during exercise does the PaO₂ decrease and A–aO₂ increase. Such measurements serve to quantify the severity of the gas exchange impairment and direct management, and in many conditions have been correlated with prognosis and survival.

Although arterial blood gas values are useful and reliable monitors of gas exchange, the measurements are invasive, expensive, and static. Pulse oximetry is a noninvasive technique where transmission of two wavelengths of infrared light through a finger or ear lobe provides a continuous measure of oxygen saturation (SaO₂). It is a reliable test when the cardiovascular state of the patient is not compromised. Normal values for SaO₂ are above 95% on
room air and should not decrease with exercise. Values below 90% on room air can be corrected with increased FiO₂, which can be monitored and adjusted by oximetry. Such measurements at the bedside or in the clinic or office are used with increasing frequency. Some have called it a “fifth vital sign”; others debate its utility over signs and symptoms; still others point out the potential errors in its use. All agree, however, that it is a readily available, relatively inexpensive, and potentially useful measurement that complements and in many instances replaces arterial blood gas determinations.

Diffusing Capacity

The affinity of CO for hemoglobin has provided a convenient noninvasive estimate of gas exchange from exhaled gas analysis. When done with continuous ventilation with low CO concentrations (<0.5%), a “steady-state DLco” can be measured that correlates well with Pₐ₋aO₂. This method is cumbersome and requires an arterial blood sample to measure Paco₂ or approximation of Paco₂ using end-tidal CO₂ values. This method has largely been replaced by a noninvasive single breath technique.

A full VC single breath of a mixture of 0.5% CO and either neon or helium held for 10 seconds in the lung followed by measurement of the concentrations in the exhaled gas, is the most common method of measuring the DLco. This “single breath DLco” describes the uptake of CO; in addition, the dilution of the inert gas measures the TLC, usually referred to as alveolar volume (Vₐ = TLC). When the abnormality is limited to the pulmonary